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ABSTRACT 

A class of dispersive equations is studied within the framework of group analysis of differential equations.  

The complete list of equivalence transformations is presented. It is shown that certain equations from the class admit 

nonclassical reductions. Potential and potential nonclassical symmetries are also considered.

KEY WORDS: Nonlinear dispersive equation, admissible transformations, Lie symmetries, Potential symmetries 

1. INTRODUCTION 

We consider the class of nonlinear dispersive equation (Rosenau, 2005). 
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which is of interest in Mathematical Physics. Special cases of this class have been used to model successfully physical 

situations in a wide range of fields.  For example, if a = 0 and b = n, we have generalization of KdV equation 

(Popovych, 2010; Rosenau, 1993) 

    0
1

 xxx

n

x

m

t u
n

uuE           (2) 

and the equation that corresponds to the values m = 2, a = b = 1 describes the motion of a diluted suspension (Rosenau, 

2006).  Equations of the type (2) with values of the parameters m and n are denoted by K (m, n).  For example, the 

properties of the equation K(2, 2) were examined in (Popovych, 2010). Further applications of the class (1) can be 

found in (Rosenau, 1994, 2000, 2005, 2006) and references therein.  

 Our goal in this chapter is to extend certain results of the recent work (Bruzon, 2012). In particular we give 

an enhanced Lie group classification for the class (1). The complete list of form-preserving point transformations is 

presented. We show the nonclassical reductions, potential symmetries and nonclassical potential symmetries. 

Equivalence Transformations: We recall that an equivalence transformation of a PDEs, E(x, t, u) = 0, is an 

invertible transformation of the independent and dependent variables of the form 

     utxRuutxPxutxQt ,,,,,,,,      (3)  

that maps every equation of the class into an equations of the same form,   .0,,  utxE  A complete classifications 

of the transformations of the class (3) that connects equation (1) and 
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provides us the so called form preserving transformations (Kingston, 1998) (or admissible transformations 

(Ovsiannikov, 1959) of equation (1). Equivalence transformations can be regarded as a subset of such 

transformations. 

     In order to derive the desired equivalence group of transformations we need to consider two cases:  

(i) a + b -1  0 and (ii) a + b -1 = 0. 

case (i) If a + b -1  0, we have uuxxtt baba 1
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From the above relation we deduce that 0 or 0 and , are nonnegative. Furthermore nonzero 

1 and and an equation with  can be transformed into one with .1  That is we can take without loss of 

generality .1  Hence, for this last possibility, equation (1) admits a three parameter group of transformation. 
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While in the case 0 equation (1) takes the form    0
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which it admits the four-parameter equivalence group (5). 

Now if 1 mm we obtain the 4-parameter equivalence group  
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From this equivalence transformation we deduce that equations (1) and (4) are connected with or being zero. 

In the other words, in the case where m = 1 equation (1) can be mapped into equation (7).  

case (ii) If a + b -1= 0,  

In this case, which also implies that 1 ba  we have uuxxtt   ,,3
  where   21  m

                          

  (9) 

As in the previous case we have or0 0 .  Hence in the case 1  equation (1) admits a three 

parameter equivalence group uuxxtt m 1

2
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while in case 0 , it admits four parameter equivalence group (9). Finally if     m = 1 which also implies that 

m’ = 1, equation (1) admits four parameter equivalence group   uutxxtt   ,, 33
. 

Clearly as in the previous case, if m = 1 equation (1) can be mapped simpler       equation (7).  

Theorem 1: Equation (1) admits  

(1) a three parameter Lie group if a, b and m are arbitrary; 

(2) a four parameter Lie group if (a) a, b are arbitrary and  m = 0 and if (b) a = 0, b = 1 and m = 2; 

(3) a five parameter Lie group of a = 0, b =    -1/2 and m = 0; 

(4) an infinite – dimensional Lie group if       a = 0, b = 1 and m = 0. 

Any other member of the class (1) is equivalent to the above five cases. 

In this case m = 0 which is equation (7), if we set n = a + b – 1 and k = b -1, we obtain the a class of equations 
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t ukuuuu  The results on Lie symmetries presented in Theorem (1).  

Invariant Solutions:  We give optimal system which consists a list   of inequivalent subalgebras for the three cases 

of Theorem (1) and we give some examples of reduced ODE’s. 
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that produce an optimal system which depend upon the values of the parameter a, b and m. We get four sub cases. 

(i) a + b - 3m + 2  0, a + b – m   0 

2213 ,,  c  where c = 0,  1. For each component of the optimal system we construct the corresponding 

similarity reduction that transforms (1) into an ODE. We obtain the following    tu   ,:2  
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The reduction that corresponds to the sub algebra 21  c leads to the equation 
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which provides travelling wave solutions for equation (1). 

(ii) a + b – 3m + 2  0, a + b – m = 0. 

22123 ,,  c  where c = 0, 1  and  є R. The sub algebra 23   produces the reduction 
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(iii) a + b – 3m + 2 = 0 , a + b – m  0. 
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22113 ,,  c  where c = 0,  1 and  є R. The sub algebra 
13    produces the reduction 
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(iv) a + b – 3m + 2 = 0, a + b – m = 0 m = 1, a + b = 1, 
221123 ,,   where  , β, γ є R. 

The sub algebra 123    produces the reduction 
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In the case β ≠ 0 the sub algebra 
123   leads to the equation 
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(2a) Here we have four Lie symmetries  0,, 321  m and ,34 xt xt  which in addition to the sub bases 

1(i)-1(iii) produce the reduction that corresponds to the sub algebra 34  c
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(2b) Here we have four Lie symmetries  2,1,0,, 321  mba and ,24 utt  which in addition to 

the sub case (1) (i) produce the reduction that corresponds to the sub algebra 14  c  where c = 0, 1. We 
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In the case c ≠ 0 we obtain .0
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   We integrate this equation and the integral has the form 
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(3) Here we have five Lie symmetries,   xt xtmba  3,0,2/1,0,, 4321 and 

ux xux  42

5  which in addition to the sub cases 1(i) and 2(a) produce the reduction that corresponds to the 

sub algebra 425    where  , β є R. 

Potential Symmetries: In this case we consider the potential system,   uvx                                 
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for  uvx  and   221 1 x
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From the coefficients of xxxxx uuu , and xu of   (12) and from the coefficient xxxuu of (13) we get that the coefficient

  is a function of t and  the coefficient    and     are  functions of t,   x and v. From equation (12) we have that 
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After we have used the above results, we have that functions  ,,,  are satisfying the   following determining 
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Equation (17) can break up into more equations in proportion the valves of the parameter a, b and m. 

From the coefficient of 
2u in equation (14) we get two cases 0v or a + b + 2 = 0.  After we have solved the 

determining system (14 – 17) we observe that for the case that 0v  and a + b + 2 = 0 we do not find potential 

symmetries. The system (11) admits Lie symmetries which induce potential symmetries for the corresponding 

equation (1) in two cases. 

(1) a + b + 2 = 0 and v ≠ 0 

(2) a + b + 2 ≠ 0 and v = 0. 

We present only the potential symmetries when      m ≠ 1. We use the equivalence transformations, equation (1) can 

be mapped into (7). We obtain that the following Lie symmetries of the system (11) induce potential symmetries for 

the corresponding equation (1) 
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Further Potential Symmetries: Equation (1) can be written in other conserved forms when the parameter n, a and 

b satisfy certain relations. For example, if a ≠ b + 1, a ≠ b and m ≠ a – b, the auxiliary system takes the form   
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for which Lie symmetries above induce potential symmetries of (1) in two cases. The first case is when (a, b, m) = 

(3, 1, 3) the system admits the following Lie symmetry which is a potential symmetry of (1). 

vux tv  6  

The second case that the system (17) produces potential symmetries is when (a, b, m) = (3/2,    -1/2, -1) and the 
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(ii) є < 0 
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can be written as a system of two equations 
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If a = b and m ≠ 0, then equation (1) admits the conservation law  
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Lie symmetries of the above three systems lead only to Lie symmetries to (1). 

2. RESULTS 

From this paper we obtained potential symmetries form by substituted for  a, b, m some values and  discussed 

the cases (i) є >0 and (ii) є<0. Hence Lie symmetries of the all the above discussed three systems lead only to Lie 

symmetries to  

 E = ut +є (u m )x + 1 [u a (u b )xx ]x  = 0    
 

3. CONCLUSION 

The main goal of this paper was the investigation of symmetry properties for special classes of nonlinear 

evolution PDEs. Also we have given optimal system which consists a list of in equivalent sub algebras. Further 

potential symmetries were discussed; finally a peculiar result is obtained. We hope the results given in this paper 

will further enrich group analysis. 
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